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Abstract
Due to the constraints arising from symmetry, each symmetric geometric
configuration is accessible only to a specific group of states having specific
quantum numbers. On the basis of the accessibility of the important symmetric
configurations of a two-dimensional N-electron dot and/or of its subsystems,
a scheme is proposed for classifying the states. In this scheme, each type of
state has its own preference for ring structures. Numerical calculations for
9-electron and 19-electron dots have been performed to check the scheme. It
was found that, on the basis of the scheme, the electronic structures of low-
lying states can be predicted nearly perfectly. The symmetry background
underlying the Laughlin wavefunction and the single-vortex states has also
been discussed. Incidentally, an integer can be ultimately resolved as a product
of prime numbers; this resolution has been used in the classification.

1. Introduction

The investigation of two-dimensional quantum dots with N electrons has been a hot topic
in recent years [1–3]. When N is small, the effect of symmetry was found to be very
important, e.g., the magic angular momenta of few-electron dots originate from the constraint
of symmetry [4, 5]. When N is larger (say, N is close to or larger than 10), the effect of
symmetry has scarcely been studied. The systems with larger N are themselves very attractive,
because they might possess the features of few-body and of many-body systems. Thus the
understanding of these systems might serve as a bridge to connect few-body and many-body
physics. This paper is dedicated to the study of two-dimensional quantum dots with a larger
N . From a preliminary study of these systems, shell structures have been found in some
specific cases [6]. A more general picture of the dots would consist of a core surrounding by
a ring [7–10]. At the present time, the constraints imposed by symmetry upon this ring model
are not at all clear. It seems that an investigation of the underlying symmetry is necessary and
timely.

The first aim of this paper is to study how symmetry would affect the electronic structures
of the dots with a larger N . On the other hand, since many physical quantities in quantum
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mechanics appear as integers, number theory might have a connection with the quantum
mechanics. According to the ultimate resolution of integers, the orbital angular momentum L
can be factorized as a product of prime numbers: L = 2n2 3n35n57n7 . . .. Would this resolution
lead to a classification of states? Our second aim is to look at this point. In what follows,
an analysis based on symmetry will be made; then numerical results for nine- and nineteen-
electron dots will be given.

2. Resolution of integers and a primary classification of states

Let us consider an eigenstate �L S of an N-electron dot, where L and the total spin S are good
quantum numbers. Let χλ̃

i be a spin state which is the i th component of the representation λ̃

of the permutation group, where λ̃ is a two-row representation with N
2 + S blocks in the upper

row and N
2 − S blocks in the lower row. �L S can be expanded as

�L S =
∑

i

Fλ
i χλ̃

i (1)

where Fλ
i is a function of spatial coordinates and is a basis state of the λ-representation, the

representation conjugate to λ̃.
When N (or N − 1) is a product of integers, i.e., N = NA NB (or N − 1 = NC ND),

the electrons may form a symmetric geometric configuration with an m-fold axis, m = NA ,
NB , NC , or ND . In such a configuration there would be k homocentric circles each containing
m electrons equidistantly distributed on the circle (some circles might have the same radius),
where mk = N or (N−1). This configuration is simply denoted as m(k). When mk = (N−1),
there would be an electron at the centre. Some of the m(k) configurations are in the domain
of low total potential energy; these m(k) are advantageous to binding and therefore important
to low-lying states. Thus, if some or all of these favoured m(k) are prohibited by symmetry
(as we shall see is the case), there would be serious consequences.

Since a rotation of an m(k) configuration about the centre by 2π
m is equivalent to k cyclic

permutations of particles, we have

ei 2π L/m Fλ
i (12 . . .) =

∑
j

Gλ
j i(pc)Fλ

j (12 . . .) (2)

where pc denotes the k cyclic permutations, and Gλ
j i(pc) is the associated matrix element of

the λ-representation. It is emphasized that this equation holds only if the particles form an
m(k)5 configuration [5]. Such equations form a set of homogeneous linear equations with the
determinant

D(L, λ, m, k) = |Gλ
j i(pc) − δi j ei 2π L/m |. (3)

Evidently, if D is non-zero, the Fλ
i must all be zero at the m(k). In this case, an inherent

nodal surface is imposed by symmetry and the m(k) is therefore inaccessible [11]. Thus,
whether D is non-zero or zero would affect strongly the electronic structure of the state.

When a magnetic field B vertical to the plane of the dot is applied, the total spin of the
true ground state Sgro depends on B . There are separate regions of B having Sgro equal to
N/2 [12]. In particular, when B is large, we always have Sgro = N/2. In this paper we discuss
only the case of S = N/2. In this case λ is totally antisymmetric and the determinant has a
simpler form:

D(L, λ, m, k) = (−1)(m−1)k − ei 2π L/m (4)

It is assumed that L � 0 (the case of L < 0 is similar). Let a series of states having the
same L be called an L-series; they are denoted as (L)n (n = 1, 2, . . .). For a given L, if a
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couple of m and k lead to D(L, λ, m, k) = 0, then the corresponding m(k) configuration is
accessible to the L-series of an N-electron system with N = mk or mk + 1. Evidently, it is
clear from equation (4) that all the m(k) are accessible to the (L = 0)-series except that in the
case of m even and k odd. When L � 1, from the resolution of integers we have

L = 2n23n3 5n57n7(11)n11 . . . (5a)

and

m = 2m2 3m3 5m5 7m7(11)m11 . . . . (5b)

Then the discriminant D = 0 reads

exp[iπ(2n2+1−m2 3n3−m3 5n5−m5 . . .)] = (−1)(m−1)k. (6)

For a given L and a given m(k) configuration, if equation (6) is fulfilled, then the m(k) is
accessible to the L-series. From (6) we have the following rules:

• Rule 1. If m is odd, or if m and k are both even, then the m(k) is accessible to the L-series
with ni � mi (here i = 2, 3, 5, . . .).

• Rule 2. If m is even and k is odd, then the m(k) is accessible to the L-series with
n2 = m2 − 1 and ni � mi (here i = 3, 5, . . .).

• Rule 3. If m = mamb and the configuration m(k) is accessible to an L-series, then both
the configurations ma(kmb) and mb(kma) are accessible to the L-series; alternatively, if
ma(kmb) or mb(kma) is inaccessible to an L-series, the m(k) is also inaccessible to the
L-series. When both ma(kmb) and mb(kma) are accessible to an L-series, the m(k) would
be definitely accessible to the L-series if ma and mb do not have a common factor.

In the case of k = 1, it is already known [4] that the m(1) configuration is accessible to the
L = m j states ( j denotes an integer throughout this paper) if m is odd, or to the L = m

2 jo states
( jo is an odd integer throughout this paper) if m is even. The above rules are a generalization
of the k = 1 case.

For an example of the application of the above rules, let us consider the 8(3) configuration.
Since this configuration has m even and k odd, rule 2 is applicable. Since in this case m2 = 3
and mi = 0 (i �= 2), rule 2 indicates that the 8(3) is accessible to the L-series of an N = 24
or 25 system with n2 = 2 and ni � 0 (i.e., L = 4 jo).

Let us consider whether the above rules are connected with some experimentally observed
phenomena. From the above rules, it is straightforward to deduce the following lemma:

Lemma. If I is an integer and L = I (I ± jo)/2 � 0, where jo is an odd integer, then any
m(k) configuration with mk = I is accessible to the L-series.

From the lemma we know that all the m(k) with mk = N are accessible to the
L = N(N − 1)/2 ± j N states, and all the m(k) with mk = N − 1 are accessible to the
L = N(N −1)/2± j (N −1) states. Therefore, all the m(k) disregarding mk = N or N −1 are
accessible to the L = jo N(N − 1)/2 states. Since the famous Laughlin wavefunction [13, 14]

ψν =
[∏

i< j

(zi − zj)
jo

]
exp

(
− 1

4

∑
j

z∗
j z j

)
(7)

has L = jo N(N − 1)/2, these special states can get access to any m(k) disregarding mk = N
or N − 1. It is noted that the domain(s) in coordinate space with a lower total potential energy
are preferred by low-lying states, and their wavefunctions are concentrated in these domain(s).
If there are some inaccessible m(k) located in these domain(s), inherent nodal surfaces will
appear and will cause an increase of energy. In contrast, since the Laughlin wavefunctions can
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get access to any m(k), no inherent nodal surfaces are contained in them (except when two
electrons overlap). Thus their energies would be relatively low and therefore they are good
approximations of ground states. It is well known that the Laughlin states have the filling factor
ν = 1

jo
= 1, 1

3 , 1
5 , . . .. Thus these filling factors associated with the experimentally observed

plateaus in the Hall resistance are related to the accessibility of symmetric configurations.
Furthermore, the so-called quasihole or single-vortex state [15, 16] has L = jo N(N −

1)/2 + N . From the above rules it is easy to see that all the m(k) configuration with mk = N
are accessible to this vortex state, while all the m(k) with mk = N − 1 are inaccessible to
it. This is an interesting point. It implies that, in order to avoid the appearance of inherent
nodal surfaces, the vortex state would deny the m(k) configurations with mk = N − 1, i.e., no
particle would stay at the centre. Accordingly, in an approximate wavefunction of this state
it is appropriate to include the factor

∏
i(zi − zc), where zc is the coordinate of the centre of

mass.
The m(k) accessibility is an important inherent feature of states and therefore can be

used as an objective basis for classifying the states. For an example, let us investigate in
detail a nine-electron dot [7, 8, 17] and see how the states can be classified according to
their m(k) accessibility. The nine electrons can form the 9(1), 3(3), 8(1), 4(2), and 2(4)
configurations. From the above rules we can understand which states can get access to which
of these configurations. For example, the 3(3) has m odd, m3 = 1, and other mi = 0. Thus
according to rule 1, the 3(3) is accessible to the L-series with n3 � 1 and other ni � 0, i.e.,
accessible to the states with L = 3 j . On the basis of the accessibility we can arrive at a very
detailed classification, where the states able to get access to a specific group of configurations
are grouped into the same type. However, a very detailed scheme may not be necessary. Since
we are mostly interested in low-lying states, the configurations associated with a considerably
higher potential energy are not important and therefore can be neglected. We shall consider a
simpler classification scheme based on only important m(k) configurations as follows.

It has been suggested that some of the electrons of the dot would form a ring outside
together with a core inside [7–10, 18, 19]. Let the structure having n electrons in the ring be
called an n-ring structure. For a nine-electron dot, the optimal potential energies of the 7-ring
and 8-ring structures are the lowest [20], that of the 6-ring is the second lowest, those for rings
with n = 9 or n � 5 are considerably higher. Therefore, a classification scheme mainly for
the low-lying states may take only the 8-, 7-, and 6-ring structures into account. In an 8-ring
structure, the minimum of the potential energy is located at an optimal centred octagon (an
8(1) configuration), and the wavefunction is mainly distributed around this octagon. Evidently,
for 8(1)-inaccessible states, the 8-ring structure is no longer a favourable choice, because the
inherent node at the octagon would push the wavefunction away from the minimum of the
potential energy, speed up the internal oscillation, and thus spoil the stability. In a 6-ring
structure, there are three particles in the core; the minimum of the potential energy is located at
a 3(3) configuration (with the two outer homocentric circles having the same radius). Therefore,
for a 3(3)-inaccessible state, the 6-ring structure is not a favourable choice. It is undoubtedly
the case that the choice of an 8-ring or a 6-ring structure depends strongly on the 8(1) and 3(3)
accessibilities. Therefore, as a first step, we propose a classification scheme based on the 8(1)
and 3(3) accessibilities as shown in table 1, where, by making use of rules 1 to 3, the L-series
are classified into four types. In this step, the important 7-ring structure has not yet been taken
into account. Since this structure is constrained by symmetry in a different way, we shall take
it into account in the next step. Nonetheless, the classification in table 1 is model independent;
it depends purely on symmetry. It is an objective basis for a more detailed classification.
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Table 1. A primary classification of states of a polarized nine-electron dot according to the 8(1)

and 3(3) accessibility. The m(k) configurations accessible to a given type are listed in the second
column; the L-series belonging to the given type are listed in the third column (the {ni } of the L
are given, the ni not listed in the table are arbitrary, or ni � 0).

Type m(k) {ni }
1 8(1), 3(3) n2 = 2, n3 � 1
2 8(1) n2 = 2, n3 = 0
3 3(3) n2 �= 2, n3 � 1
4 n2 �= 2, n3 = 0

3. A detailed classification scheme for a nine-electron dot

In the previous section the accessibility of the m(k) configurations has been studied. This
accessibility is governed by the constraints originating from the equivalence of rotation of
symmetric configurations and cyclic permutations (refer to equation (2)). This idea can be
generalized to the configuration with Nout electrons located outside in a ring and with Nin

electrons located inside in a core; Nout + Nin = N . Let the angular momenta of the ring
and the core be denoted as Lring and Lcore, respectively. Of course, they are not good
quantum numbers, and there are many choices for them. For the ring, when the electrons
are equidistantly distributed on a circle (forming a regular polygon), the rotation by the angle
2π/Nout is equivalent to a cyclic permutation. Thus, the regular polygon is accessible to the
outward subsystem only if Lring = j Nout (if Nout is odd) or Lring = jo Nout /2 (if Nout is
even), just like an m(k) configuration with m = Nout and k = 1. Similarly, we can consider
the m ′(k ′) accessibility of the subsystem in the core; here m ′k ′ = Nin or Nin − 1. In this
way, we can identify the favourable choices of Lring and Lcore (in these choices, symmetric
configurations for the subsystems are accessible). With this in mind, let us consider the 7-ring
structure of a nine-electron dot.

Since 7 and 2 do not have a common factor, the 7-ring structure is not subject to the overall
constraints imposed by the m(k) accessibility, but is subject to partial constraints as discussed
in the previous paragraph. For the ring, Lring = 7 j is a favourable choice. For the core,
the configuration with the two electrons located equidistantly on either side of the centre can
reduce the Coulomb repulsion and therefore is advantageous as regards binding. However,
since this favourable configuration is in fact a 2(1) configuration, it would be prohibited if Lcore

is even. Consequently, the 7-ring structure would be a favourable choice only if L = 7 j + jo.
Moreover, since the rotation energy of an electron is proportional to (li/ri )

2, where li the
angular momentum of the electron and ri the radial distance, it is better for the electrons in the
core to have a very small li ; otherwise the rotation energy will greatly increase. This implies
that, for low-lying states, the total angular momentum would be mainly contributed by Lring

while Lcore would be very small. From experience with our numerical calculation, as shown
later, we can state that the 7-ring structure is no longer a favourable choice if jo � 5. Thus
we can make the statement (arising partially from symmetry considerations and partially from
dynamics and experience) that the 7-ring structure is a favourable choice if

L = 7 j + j ′
o ( j ′

o = 1 or 3). (8)

With the help of equation (8), each type in table 1 can be further classified into A and B;
the type A has L = 7 j + 1 or L = 7 j + 3, while L for type B takes other values. This more
detailed classification is given in table 2, where the L belonging to a specific type are listed
(36 � L � 73). For example, type 3A contains the L = 45, 57, 66, . . . states, in which the
7- and 6-ring structures are not constrained by symmetry and therefore are both favourable
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Table 2. A detailed classification of the L-series of a nine-electron dot (36 � L � 73). If an n-ring
structure is a favourable choice for a given type, the associated block is marked by the symbol ×
(e.g., both the 7- and 6-ring structures are favourable choices for the type 3A).

Type 7-ring 8-ring 6-ring L

1A × × × 36
2A × × 52
3A × × 45, 57, 66
4A × 38, 43, 50, 59, 64, 71, 73
1B × × 60
2B × 44, 68
3B × 39, 42, 48, 51, 54, 63, 69, 72
4B 37, 40, 41, 46, 47, 49, 53, 55,

56, 58, 61, 62, 65, 67, 70

choices, while the 8-ring is not because the 8(1) configuration is inaccessible to this type.
If we neglect the electronic structures and emphasize just the energy, then the above eight

types can be grouped into three groups. The first group contains the first six types 1A to 2B,
and the 7-ring and/or 8-ring structures are favourable choices for them; therefore this group is
better for binding. The second group contains only the type 3B; only the 6-ring is a favourable
choice. Since the 6-ring is higher in potential energy, the binding is relatively weak. The
third group contains only the type 4B; all the 7-, 8-, and 6-ring structures are non-favourable
choices. Therefore the binding of the third group is the weakest. It is expected that the levels
of the ‘first-states’ (a ‘first-state’ is the lowest state of an L-series) of the first group should
be relatively low, while those of the third group should be higher. In order to see how the
energies and the electronic structures are related to the classification, we perform numerical
calculations and analyse the results as follows.

4. Numerical results

Let the Hamiltonian be

H =
∑

i

[
p2

i

2m∗ +
1

2
m∗ω2

0r2
i

]
+

e2

4πε

∑
i> j

1

ri j
(9)

where m∗ = 0.067 me and ε = 12.4 are assumed (for GaAs dots). ω0 arises from a parabolic
confinement and/or from a magnetic field B (the well known linear term proportional to B is
ignored because this term does not affect the electronic structures at all, and thus is not relevant
to the following discussion).

The method used to solve the Schrödinger equation is basically the same as the one given
by Manninen et al [16]; the Hamiltonian is diagonalized in a space spanned by antisymmetrized
many-body basis functions 
i for S = N/2 states. The set 
i are composed of the Darwin–
Fock single-particle states ϕuv with adjustable frequency ωe f f . The ϕuv has an eigenenergy
(u + v + 1)h̄ωe f f and an angular momentum (u − v)h̄; the parameter ωe f f will be optimized
in the calculation. In particular, the states from several Landau levels are included. The
two-dimensional Talmi–Moshinsky coefficients are used to facilitate the calculation of matrix
elements [21]. In order to confine the number of basis functions, first of all the maximal
values of u and v for the single-particle states have to be fixed. Then they can constitute a
limited set of 
i for a given L. It is recalled that the lowest Landau levels have K , the sum
of the v for the N particles, equal to zero. In what follows, only the 
i with K = 0, 1, and
2 are taken into account. In order to further confine the number of 
i , they are arranged in
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a sequence such that 〈
i |H |
i〉 � 〈
i+1|H |
i+1〉. Evidently, in this sequence the 
i with a
very large index i are not important to low-lying states. We found that such an arrangement is
very helpful for improving the results if only matrices of finite dimension can be dealt with.
The diagonalization was first carried out in a given smaller space (with the index i smaller),
then again in a larger space (i.e., the 
i with larger i are added), and again repeatedly until
a satisfactory convergence of the eigenenergies is achieved. We found that, for the low-lying
states concerned in the calculation, i � 12 000 is sufficient for obtaining qualitatively accurate
results.

To show the convergency, examples are given as follows.

(a) For N = 9, L = 51, and h̄ω0 = 3 meV, the maximal values of u and v are first given as 16
and 2, and K � 2 is assumed. Accordingly, the total number of 
i is 34 215. When the
lowest 4000, 6000, and 8000 of them are adopted, the corresponding lowest eigenenergies
are 250.75, 250.64, and 250.60 meV, respectively. Although the convergency of the energy
is not very good, the correlated densities (as shown later) extracted from the corresponding
eigenwavefunctions remain nearly unchanged. Since the emphasis of this paper is not on
precise calculations but on the qualitative aspects, the results from the calculation with
8000 basis functions are sufficient for our purpose. Also, we found that, for the lowest
eigenstate with the 8000 basis functions, the weights of the K = 0, 1, and 2 components are
0.879, 0.107, and 0.014. This implies that, even if the K � 3 components are included,
the effect on the wavefunctions would be very small. Therefore, it is not necessary to
include them. Furthermore, let us define the weight of a u0-component, which is the sum
of the squares of the amplitudes of the 
i having the maximal value u = u0. Then, for
this state, the weights of the u0 = 14, 15, and 16 components are 0.0306, 0.0114, and
0.0003. This implies that the Darwin–Fock states with u � 17 do not have to be taken
into account.

(b) For N = 19, L = 183, and h̄ω0 = 3 meV, the maximal u and v are first given as 28
and 1, and K � 1 is assumed. Accordingly, the total number of 
i is 21 968. When
the lowest 4000, 8000, and 12 000 of them are adopted, respectively, the corresponding
lowest eigenenergies are 893.79, 893.68, and 893.64. Again, the convergency is not very
good but is sufficient for our purpose.

In what follows, let us first give the calculated spectrum of a nine-electron dot. Let En(L)

be the energy of the (L)n state, the nth state of an L-series. If Coulomb repulsion is removed,
the states with L � N(N−1)/2 remain in the lowest Landau levels with the energy (L+N )h̄ω0.
Therefore we define

Ecoul(L) = E1(L) − (L + N)h̄ω0 (10)

which measures the effect of Coulomb repulsion on the first-states (L)1. These quantities are
given in figure 1. In general, the increase of L would lead to a larger size and therefore a weaker
Coulomb repulsion, and accordingly a smaller Ecoul . However, the curve of Ecoul(L) is not
smooth. When L takes some specific values L pl , there are a number of small plateaus arising
from the equality Ecoul(L pl) = Ecoul(L pl + 1). For example, a plateau starts from L pl = 45
and ends at L = 46, and so on. In this case we have E1(L pl + 1) = E1(L pl)+ h̄ω0; this implies
that the (L pl + 1)1 state is simply a c.m. excitation of the (L pl)1 state, and it also implies that
the internal energy of the (L pl + 1)-series is considerably higher. One might suggest that if
an L pl is in the first group of table 2 while L pl + 1 is in the third group, then a plateau might
emerge because this case would lead to a great difference in internal energy. From table 2 we
know that these L pl are 45, 52, 57, 60, 64, and 66 (within the range 44 � L � 72). It turns
out that each member of this series of L-values picked from table 2 is actually associated with
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Figure 1. Ecoul for a nine-electron dot as a function of L . h̄ω0 = 3 meV is assumed.

a plateau in figure 1 without exception (however, the plateau starting from L = 66 is a little
inclined). The inverse is also true, i.e., each plateau in figure 1 starts from an L belonging
to the first group while L + 1 belongs to the third group. The only exception to this inverse
statement is the case of the plateau starting from L pl = 71 (the first group) and ending at 72
(the second group). The above facts demonstrate that the classification is closely related to
the energies of states. In what follows, it will be shown that the classification is even more
closely related to the electronic structures. Incidentally, the L pl , namely L = 45, 52, 57 · · ·,
may be magic angular momenta associated with the true ground states [4]. Also, Ruan et al
have used a different method based on hyperspherical harmonic coordinates [17] to solve the
Schrödinger equation; the features of the spectra that they found were qualitatively the same
as our findings (refer to figures 1(a) and 2(a) of the [17]).

The electronic structures of an eigenstate �L S can be demonstrated via the two-body and
three-body density functions defined as

ρ2(�r1, �r2) =
∫

d�r3 · · · d�r9 |�L S|2 (11a)

and

ρ3(�r1, �r2, �r3) =
∫

d�r4 · · · d�r9 |�L S|2. (11b)

ρ2 is plotted in figure 2 for selected examples, where �r2 is fixed at the X-axis (marked by
a black spot) and ρ2 is considered as a function of �r1 moving in the X–Y plane (only given
in the upper plane due to the up–down symmetry). This figure confirms the ring structure
suggested previously [7–10]. In particular, Nout , the number of electrons in the ring, is found
to be strongly type dependent as we shall see. Nonetheless, for higher states, the structures are
less constrained by symmetry because there are many choices for them (many possible ways
of producing excitation). Therefore their structures are difficult to foresee; we will not discuss
them in general. Incidentally, in contrast to the atoms, the dots do not contain a few valence
electrons outside but a ring with many electrons. This is an interesting point.

Let us first inspect the L = 60 states belonging to the type 1B. Both the 8- and 6-ring
structures are favourable choices for this type; they are found to appear in (60)1 and (60)2

states, respectively, as shown in figures 2(a) and (b). These two states are crystal-like. The
7-ring structure is not expected because it is not a favourable choice.



The symmetry background underlying the ring structures of quantum dots 8557

0 3.22

m (48)2

0 3.95

n (96)2

0 2.86

o (44)1

0 2.86

p (52)1

0 2.71

i (38)3

0 3.06

j (50)1

0 3.22

k (48)1

0 3.95

l (96)1

0 3.81

e (81)1

0 4.00

f (99)1

0 2.71

g (38)1

0 2.71

h (38)2

0 3.11

a (60)1

0 3.11

b (60)2

0 2.75

c (36)1

0 3.34

d (63)1

Figure 2. Contour plots of ρ2(�r1, �r20) for a nine-electron dot as a function of �r1. h̄ω0 = 3 meV
is assumed. The fixed �r20 is marked by a black spot and the distance �r20 is given in each panel
in units of

√
h̄/(m∗ω0) = 194.7 Å. The innermost contour (associated with the highest peak) is

marked by a double line.

0

0

c (183)1

0

d (184)1

0

a (81)1 b (48)2

Figure 3. Contour plots of ρ3 of 9-electron ((a) and (b)) and 19-electron ((c) and (d)) dots. The
two fixed electrons are marked by black spots. h̄ω0 = 3 meV is assumed. Different scales have
been used for different states..

An example of the type 1A is the (36)1 state shown in figure 2(c), which is liquid-like. It
is noted that a clear geometric structure arises from the coherent mixing of a number of basis
functions. However, for the case of L = 36, there is only one basis function in the lowest
Landau level. This basis function, the Laughlin wavefunction with jo = 1 (cf equation (7)),
dominates the (36)1 state. Due to the features of this wavefunction and due to the lack of
coherent mixing, the (36)1 state cannot possess a clear geometric feature. Nonetheless, the
higher L = 36 states do have clear ring structures (not shown here).
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Figures 2(d) and (e) show examples of the type 3B; they have a clear 6-ring structure
(which is the only favourable choice). To see more clearly the structure of the core, ρ3 for the
(81)1 state is plotted in figure 3(a), where the core has a clear regular triangle shape.

Figure 2( f ) shows an example of the type 3A. Both the 7- and 6-ring structures are
favourable choices for this type; however, the 7-ring is lower in potential energy. Therefore,
the first-state (99)1 chooses the 7-ring, as shown in the figure.

Figures 2(g)–( j ) show examples of the type 4A; only the 7-ring structure is a favourable
choice for this type. The (38)3, (50)1 states of this type are found to be 7-rings. It is noted
that the L = 38 states have only two basis functions in the lowest Landau level. Thus the
(38)1 and (38)2 states are liquid-like (figures 2(g) and (h)) due to the lack of coherent mixing,
whereas the (38)3 state is dominated by a number of basis functions in the second-lowest level;
therefore a clear geometric structure emerges.

Figures 2(k)–(n) also show examples of the type 3B. The first-states plotted in figures 2(k)
and (l) each have a clear 6-ring as expected. However, the L = 48 and 96 states are not only
3(3) accessible but also 4(2) accessible, because they have n2 � 2 (cf rule 1). Owing to the 4(2)
accessibility, a double-square structure was found in the (48)2 state as shown in figure 2(m),
where each vertex of the smaller square is located at the mid-point of a side of the larger square.
To show more clearly the double square, ρ3 of the (48)2 state is plotted in figure 3(b). On the
other hand, although the 8(1) configuration is inaccessible to the type 3B, the (96)2 state was
found to have an 8-ring structure (figure 2(n)). This implies that a higher 8(1)-inaccessible
state might have an 8-ring structure. In this case a node will appear in the wavefunction in
the centred-octagon configuration, and thereby a stronger internal motion (e.g., the relative
oscillation of the electrons in the ring) is involved. In other words, 8(1)-inaccessible states can
only possess excited 8-ring structure.

Figure 2(o) shows an example of the type 2B, where the (44)1 state is shown to have an
8-ring structure as expected.

Figure 2(p) shows an example of the type 2A. Both the 7-ring and 8-ring are favourable
choices for this type; there is competition. Since the optimized potential energies of these two
ring structures are very close to each other, which one would be the ‘winner’ is difficult to
foresee. It turns out that the (52)1 state has an 8-ring structure (figure 2( p)). However, the
first-states of this type are found to have a 7-ring structure if L � 148, because the 7-ring has
a larger size and thereby a larger moment of inertia. For a state with a large L, the collective
rotation energy is very large; therefore the structure with a larger moment of inertia would be
chosen to reduce the rotation energy. This is a point requiring further clarification.

In addition to the above examples, Nout -values for the first-states are listed in table 3 (for
44 � L � 73, the same range as in figure 1).

It is clear from the table that, for the first-states, the types determine to a great extent the
numbers of electrons contained in the ring; thus the classification makes sense. There are three
types, namely the 4A, 2B, and 3B, having only one favourable choice. For each first-state for
these types the n-ring structure is just the favourable choice determined by the type. As an
example, all the first-states of the type 4A under consideration have the 7-ring structure (the
only favourable choice). However, there is an exception for the type 3B: instead of a 6-ring,
the (72)1 state is a c.m.-excited version of the (71)1 state; this is a point requiring clarification.

There are four types each having more than one favourable choice, namely the types 1A,
2A, 3A, and 1B. In these cases a competition among the n-ring structures arises. It has been
stated that the (optimized) potential energies of the 8- and 7-ring structures are the lowest, the
6-ring is the second lowest, while the 5- and 9-rings are remarkably higher. In the type 2A the
8-ring wins in the competition with the 7-ring when L is not so large; however the 7-ring wins
when L � 148. In the type 3A the 7-ring wins in the competition with the 6-ring when L is
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Table 3. Ring structures of the first-states with (44 � L � 73). (n) denotes an n-ring structure,
an excited n-ring structure (with excited internal oscillation) is denoted by (n), (˜) denotes an
ambiguous structure, and (c.m.) denotes that the c.m. motion has been excited. The states associated
with the plateaus in figure 1 are marked by asterisks.

Type L

1A
2A 52*(8)
3A 45*(9), 57*(7), 66*(7)
4A 50(7), 59(7), 64*(7), 71*(7), 73(7)
1B 60*(8)
2B 44(8), 68(8)
3B 48(6), 51(6), 54(6), 63(6), 69(6), 72(c.m.)
4B 46(c.m.), 47(˜), 49(˜), 53(c.m.), 55(5), 56(˜)

58(c.m.), 61(c.m.), 62(5), 65(c.m.), 67(7), 70(6)

not so large; however, the 6-ring wins when L � 141. In the type 1B the 8-ring wins in the
competition with the 6-ring when L is not so large; however, the 6-ring might win when L is
large enough.

When L gets larger and larger, collective rotation energy becomes more and more impor-
tant, and thus a structure with a large moment of inertia becomes very attractive. It is not yet
clear whether, when L is very large, other structures with moment of inertia larger than the
ring structure (say, an ellipse) should be pursued. This is an interesting point.

It is noted that the angular momenta li of the electrons in the ring are usually much larger
than those in the core. However, for the single-vortex state (45)1, all the li are closely packed,
ranging from li = 1 to 9 (two li cannot be equal unless one electron jumps to a higher Landau
level). Consequently, the ring and the core of the (45)1 state are very close to each other, so
they in fact form a broad ring with the centre empty. Among the many first-states of different
types that we have calculated, only the (45)1 state has such a special structure.

All the 7-, 8-, and 6-ring structures are not favourable choices for the type 4B. It is
shown in the table that they either have an ambiguous structure, or a 5-ring structure (higher
in potential energy), or have the c.m. excited. However, the members with larger L may
have an n-ring structure (6 � n � 8). It was found that meanwhile the wavefunction is not
smoothly distributed in the ring but contains a node (e.g., if one electron locates at the centre
and seven electrons locate at the vertices of an octagon, then the empty vertex is a node of the
wavefunction). This implies that only the excited n-ring structures can emerge in this type.

The above investigation confirms the great effect of symmetry, and the classification
scheme works almost perfectly.

5. A general dot and a summary

For a general N-electron dot, as a standard procedure, first we have to work out which
configurations are important (lower in potential energy); then we have to study the accessibility
of these configurations, i.e., to which L-series they are accessible. For an m(k) configuration
the accessibility can be clarified by making use of rules 1–3. For other cases (where Nout and
Nin do not have a common factor), we have to study how the subsystems are constrained by
symmetry. According to the accessibility, the states can be classified, and we can understand
which structures are favourable choices for a specific type of state.

When N = 6, the 5(1), 3(2), 2(3) configurations should be considered (In this way, the
6(1) configuration has been automatically taken into account, because once both the 3(2) and
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2(3) configurations are accessible to an L-series, the 6(1) configuration is also accessible due to
the rule 3). The type able to get access to all of these m(k) has n2 = 0, n3 � 1, n5 � 1, ni � 0,
which is just the intersection of {L ≡ 0 mod 5} and {L ≡ 3 mod 6}. It is well known that the
states with these L are candidates for being ground states [4].

When N = 19, the 12-ring structure is important. On the other hand, there is a highly
symmetric 6(3) configuration composed of 24 regular triangles (i.e., each inner particle keeps
equidistant from all its neighbours). This configuration is a minimum of the potential energy;
the radii of the three homocentric circles are equal to 1,

√
3, and 2. Since the radii of the two

outer circles are close to each other, the wavefunction of a 12-ring structure [6] will be mainly
distributed in a domain containing the 6(3) configuration. Therefore, the 6(3) accessibility
is crucial to whether the 12-ring is a favourable choice. From rule 2 we know that a 6(3)-
accessible state has n2 = 0 and n3 � 1. Examples of ρ3 belonging to and not belong to this
type, respectively, are shown in figures 3(c) and (d). A very clear 12-ring structure is shown
in figure 3(c). A more detailed discussion on N > 9 dots will be given elsewhere.

In summary, a classification scheme has been proposed in this paper: the states are in
essence classified according to their ability to get access to symmetric configurations. In
this scheme, each type has its own preference for structures. As an example, the states of a
nine-electron dot have been classified in detail. Furthermore, an exact diagonalization of the
Hamiltonian has been performed. Since higher Landau levels have been included, accurate
(in the qualitative sense) eigenstates have been obtained. In addition to ρ2-values, which have
been calculated quite often in the literature, ρ3-values (which have hardly ever been calculated
for dots before) have also been calculated to help in the analysis. The great effect of symmetry
and the plausibility of the classification have been confirmed by the numerical results. Thus,
the electronic structures can be more or less foreseen. In particular, the ring structures of the
first-states can be predicted accurately to a great extent. There is a similarity existing among the
L-series of the same type. The symmetry background underlying the stability of the Laughlin
wavefunction and the single-vortex states has also been discussed.

A radically different approach to the classification of states is based on the composite
fermion model [22]. This model works very well when the number of electrons N is small.
When N is larger, some discrepancies have been reported (e.g., this model does not predict
the magic angular momenta L = 40 and 50 of the six-electron system). The validity of this
model is not clear when N is even larger. On the other hand, our approach is mainly based on
symmetry considerations and therefore is basically model independent. Also, our approach
is designed for dots with a larger N . Nonetheless, to confirm the validity of our approach
for N > 9 systems, a detailed investigation for these systems is necessary. This is under
consideration.

Although only the case of S = N/2 is considered in this paper, the idea and the formalism
(cf equations (2) and (3)) are general; thus the consideration can be directly generalized to the
case of S �= N/2. In fact, the symmetry constraint is a universal concept, which is embodied by
the m(k) accessibility for all kinds of two-dimensional systems and subsystems with a centre.
The introduction of this concept will lead to a better understanding of these systems.

Specifically, the above discussion can be generalized to cover bosonic systems, to deal
with the Bose–Einstein condensates. For bosonic systems, equation (6) is replaced by

exp[iπ(2n2+1−m2 3n3−m3 5n5−m5 . . .)] = 1. (12)

Therefore the states able to get access to an m(k) configuration should have ni � mi , or should
have L = jm. With this in mind, the magic angular momenta found in a two-dimensional
rotating bosonic system [23] can be explained. For example, the magic number L = 42 of an
N = 7 system arises from 7(1) and 6(1) accessibility, the magic number L = 56 of an N = 8
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system arises from 8(1) and 7(1) accessibility, the magic number L = 42 of an N = 9 system
arises from 8(1) and 3(3) accessibility, the magic number L = 90 of an N = 10 system arises
from 9(1), 5(2), and 3(3) accessibility, and so on.

Number theory and quantum mechanics are two previously unrelated areas of science.
Here we show a relation between them—namely, that of the primary classification of electronic
structures and the ultimate resolution of L as an integer.
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